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1. Introduction

In spite of the phenomenological success of the Standard Model (SM), new physics is

expected to appear at some higher energy scale, and hopefully to provide a solution

to the hierarchy problem, the origin of fermion masses and CP-violation, and other

theoretical puzzles. The new physics may change the properties of the Higgs boson,

with a substantial impact for Higgs searches in collider experiments. This is the case

in extensions of the SM that include gauge singlet scalars, leading to Higgs boson

decays into pairs of light neutral scalars [1].

Here we point out that the Higgs sector of the Next-to-Minimal Supersymmetric

Standard Model (NMSSM) [2] includes an axion, i.e., a pseudo-Nambu-Goldstone

boson associated with an anomalous U(1) symmetry, which for a range of parameters

is signi�cantly lighter than the other scalars. The NMSSM is a well motivated

candidate for physics beyond the Standard Model. Not only does it provide a solution

to the hierarchy problem when combined with dynamical supersymmetry breaking,
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but it is also free of the � problem that plagues the minimal supersymmetric extension

of the SM (MSSM).

In what follows we shall investigate in some detail the Higgs spectrum and cou-

plings in the NMSSM. The purpose of our study is twofold. First, we seek to delineate

the region of the NMSSM parameter space consistent with the existing collider data

which exhibits a light axion. Second, for the part of parameter space in question,

we compute the strength of the SM-like Higgs boson coupling to axion pairs. If

this coupling is sizable, it will have a profound e�ect on the collider searches for the

Higgs boson, as the Higgs boson then decays mainly into light axion pairs, and the

b�b signature is diluted.

The Higgs boson decay to axions persists even when the scale of supersymmetry

is very large and the superpartners decouple. Furthermore, this phenomenon may

occur in non-supersymmetric theories, e.g., composite Higgs models [3, 1] or Majoron

models [4].

The plan of the paper is as follows. In Section 2 we introduce our notation,

derive the general tree-level mass matrices of the Higgs sector, and list the trilinear

couplings between one CP-even and two CP-odd Higgs bosons in the NMSSM. In

Section 3 we concentrate on the case of a light axion, identifying the relevant range of

NMSSM parameters and discussing the resulting masses and mixings in the CP-odd

scalar sector. We then derive simple analytic expressions for the Higgs spectrum

and couplings in two cases of interest | a decoupling limit (Section 4) and large

tan � (Section 5). A more generic case requires a numerical study, the results being

presented in Section 6. Section 7 is reserved for our conclusions.

2. Next-to-Minimal Supersymmetric Standard Model

The Next-to-Minimal Supersymmetric Standard Model has the �eld content of the

MSSM with the addition of a gauge-singlet chiral super�eld1, Ŝ. In addition to

the usual Yukawa-type couplings of the Higgs super�elds, Ĥu and Ĥd, to the three

generations of quark and lepton super�elds, the superpotential W also includes the

following terms involving Ŝ:

W = �ĤuĤdŜ +
�

3
Ŝ3 : (2.1)

We assume that the R-parity violating terms involving quarks and leptons, and the

dimensionful ĤuĤd, Ŝ
2 and Ŝ terms are forbidden by a gauge symmetry which is

spontaneously broken above the TeV scale [5]. A sector of dynamical supersymmetry

1We shall use hatted symbols to represent chiral super�elds and symbols without hats for their

lowest (scalar) components.
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breaking is supposed to induce masses for the squarks, sleptons and gauginos, as well

as soft supersymmetry breaking terms involving the scalar components of Ĥu, Ĥd

and Ŝ:

Vsoft =M2
Hu
jHuj2+M2

Hd
jHdj2+M2

S
jSj2+

p
2

�
m�H

>
u
i�2HdS �

m�

3
S3 + h:c:

�
: (2.2)

The HuHd, S
2 and S soft terms are forbidden by the same symmetry which prevents

the ĤuĤd, Ŝ
2 and Ŝ terms in the superpotential.

In what follows we treat the NMSSM as a low-energy e�ective �eld theory valid

below some scale, say in the TeV range. Therefore, we de�ne the �ve mass parameters

from Vsoft as free parameters at the electroweak scale, v � 246 GeV. Phenomenolog-

ically, they are constrained by the requirement of having an electroweak asymmetric

vacuum and a spectrum of scalars heavier than the current experimental bounds.

The scalar potential for the Higgs sector of the NMSSM is

V =
����H>

u
i�2Hd + �S2

���2 + �2
�
jHuj2 + jHdj2

�
jSj2 + VD + Vsoft ; (2.3)

with the usual D-term contributions

VD =
M2

Z

2v2

�
jHuj2 � jHdj2

�2
+ 2

M2
W

v2

���Hy
u
Hd

���2 ; (2.4)

where MW (MZ) is the W -boson (Z-boson) mass. If V has a minimum where the

vacuum expectation values (VEVs) of Hu and Hd are aligned and non-zero, the

electroweak symmetry is spontaneously broken. Then, in addition to the longitudinal

W and Z (i.e. the Nambu-Goldstone modes G+ and G0, respectively) the scalar

spectrum includes a charged Higgs boson, H�, and �ve neutral states. In general all

�ve neutral states mix. However, if Im(���m�m
�
�
) � v2, then the scalar potential

is approximately CP invariant. We will assume that this is the case, so that the

mixing of the CP-even neutral scalars with the CP-odd ones can be ignored. It is

convenient to derive the spectrum using the basis where the CP-even, h0
v
; H0

v
; h0

s
, and

the CP-odd, A0
v
; A0

s
, states are de�ned as follows:

Hd =

0
B@

1p
2
[(v + h0

v
� iG0) cos � � (H0

v
� iA0

v
) sin�]

� G� cos � +H� sin�

1
CA ;

Hu =

0
B@ G+ sin � +H+ cos �

1p
2
[(v + h0

v
+ iG0) sin� + (H0

v
+ iA0

v
) cos �]

1
CA ;

S =
1p
2

�
s + h0

s
+ iA0

s

�
; (2.5)
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with tan � � hH2
u
i=hH1

d
i. Notice that in order to generate masses for both up-type

and down-type quarks one needs VEVs for both Hu and Hd. The m�H
>
u
i�2HdS soft

term forces S to have a non-zero VEV, s. We choose 0 < � < �, which requires

s > 0 in order to minimize the �rst term in Eq. (2.3).

There are several advantages of using the basis (2.5) from the beginning. First,

notice that h0
v
is rotated in the same way as v, and is exactly the linear combination of

H1
d
and H2

u
responsible for the masses of the W and Z gauge bosons. Consequently,

h0
v
is also the state which has trilinear couplings to W and Z pairs, and can be

produced in association with a W or Z at the Tevatron or LEP. In short, h0
v
can

be identi�ed with the SM-like Higgs boson, h0. In addition, the Nambu-Goldstone

modes G� and G0 decouple from the corresponding mass matrices and need not be

considered in our further analysis. (The basis (2.5) was considered also in [6]; for

results in the more conventional basis see, e.g. [7].)

The extremization conditions for the scalar potential allow us to replace the three

mass-squared parameters from Vsoft by the three VEVs, v sin �; v cos �; s:

M2
Hd

= ��
2

2

�
s2 + v2 sin2�

�
+
��

2
s2 tan� � M2

Z

2
cos 2� +m�s tan � ;

M2
Hu

= ��
2

2

�
s2 + v2 cos2�

�
+

��s2

2 tan�
+
M2

Z

2
cos 2� +

m�s

tan �
;

M2
S
= ��

2

2
v2 +

��

2
v2 sin 2� � �2s2 +

m�v
2

2s
sin 2� +m�s : (2.6)

Therefore, the scalar masses depend on the following six unknown parameters: tan�,

�; �, s, m�; m�.

The squared-mass matrix for the CP-even scalars, h0
v
; H0

v
; h0

s
, is given by

M2
h
= v2

0
BBBBBBB@

r +
M2

Z

v2
r cot 2� �2 sv � R

r cot 2� �r + ��s2 + 2m�s
v2 sin 2�

�R cot 2�

�2 sv � R �R cot 2� s
v2

(2�2s�m�) +
m�

2s sin 2�

1
CCCCCCCA

(2.7)

where we have de�ned

r �
 
�2

2
� M2

Z

v2

!
sin22� ; (2.8)

and

R � 1

v
(��s+m�) sin 2� : (2.9)
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We label the CP-even mass eigenstates in order of increasing mass,0
BB@
H0

1

H0
2

H0
3

1
CCA = U

0
BB@
h0
v

H0
v

h0
s

1
CCA ; (2.10)

where the 3� 3 orthogonal matrix U may be obtained by diagonalizingM2
h
. When-

ever there is no confusion, we shall use an alternative labelling of the Higgs boson

mass eigenstates, in analogy to the MSSM. We shall use h0 for the SM-like mass

state, i.e. the one with the largest projection onto h0
v
; H0 for the state correspond-

ing to the \heavy" CP-even Higgs boson of the MSSM, i.e. the one with the largest

projection onto H0
v
; and H 00 for the state corresponding to the additional singlet of

the NMSSM, i.e. the one with the largest projection onto h0
s
. As can be readily seen

from (2.7), in the limit of large s, the SM-like Higgs boson h0 is identi�ed with H0
1 .

However, for small values of s, h0 can also be H0
2 or even H

0
3 , depending on the other

parameters.

The CP-odd states, A0
v
; A0

s
have the following squared-mass matrix:

M2
A
=

0
B@

��s2 + 2m�s
sin 2�

�v (��s�m�)

�v (��s�m�)
�
��+ m�

2s

�
v2 sin 2� + 3sm�

1
CA : (2.11)

The CP-odd mass eigenstates may be written in terms of the A0
v
and A0

s
states:

 
A0

1

A0
2

!
=

 
cos �A sin �A
� sin �A cos �A

! 
A0
v

A0
s

!
; (2.12)

with a mixing angle �A that satis�es

tan 2�A =
�4vs(��s�m�) sin 2�

v2 sin22�(2��s+m�)� 2s2(��s+ 2m� � 3m� sin 2�)
: (2.13)

Finally, the charged Higgs boson has a mass

M2
H� =

��s2 + 2m�s

sin 2�
� �2

2
v2 +M2

W
: (2.14)

The vacuum de�ned by Eq. (2.5) is indeed a viable minimum of the scalar potential

provided all physical scalars have positive masses. Therefore, all eigenvalues of M2
h

and M2
A
have to be positive, and M2

H� > 0. We will analyze the constraints on

the parameter space imposed by these conditions both numerically (Section 6) and

analytically in certain interesting limits (Sections 4 and 5).

In particular, we will be concentrating on the case where one of the CP-odd

scalars is light, and therefore the neutral CP-even scalars may decay into a pair
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of CP-odd states. The relevant trilinear couplings in the basis (2.5) are given at

tree-level by

LHAA = �v
2

(" 
�2

2
+ r cot22�

!
h0
v
� r cot 2� H0

v
+

�
R + �2

s

v

�
h0
s

#
(A0

v
)2

+

"
� (� sin 2� + �)h0

v
+ �� cos 2� H0

v
+ 2

�2s�m�

v
h0
s

#
(A0

s
)2

�2
 
��s�m�

v
h0
v
+ ��h0

s

!
AvAs

)
: (2.15)

In order to compute the Higgs decay width into CP-odd scalars, one has �rst to

determine the rotation matrix U and the mixing angle �A, and then to derive the

trilinear couplings in the mass eigenstate basis. We will perform this computation

in the following sections.

3. The Case of a Light Axion

3.1 Approximate R-symmetry

The scalar potential V has no global continuous symmetry. However, in the limit

where the coe�cients of the trilinear terms vanish, m�; m� ! 0, the potential has

a global U(1)R symmetry under which the S charge, yS 6= 0, is half the charge of

HuHd. This symmetry is spontaneously broken by the VEVs of Hu; Hd and S, so

that apparently there is a Nambu-Goldstone boson in the spectrum. In addition,

U(1)R is explicitly broken by the QCD anomaly. To see this, note that the Yukawa

terms responsible for quark masses impose constraints on the U(1)R charges of the

quarks such that the [SU(3)C ]
2 � U(1)R anomaly is proportional to yS. Hence the

Nambu-Goldstone boson is in fact an axion, and there is a small contribution to its

mass from QCD.

Furthermore, there is another source of explicit U(1)R breaking. To see this, note

that the form of the superpotential (2.1) requires that U(1)R does not commute with

supersymmetry, i.e. the fermion components of the Ĥu; Ĥd and Ŝ super�elds have

di�erent U(1)R charges than the corresponding scalars. Therefore, this U(1)R is anR-

symmetry. Given that the gauginos carry R-charge, it follows that U(1)R is explicitly

broken by the gaugino masses. This e�ect appears in the e�ective potential via one-

loop diagrams withHu;d-gaugino-Higgsino vertices. Although this contribution to the

axion mass is larger than the contribution from the anomaly, the loop suppression

implies that the axion is lighter than the other scalars by more than an order of

magnitude in the limit m�; m� ! 0.
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One has to be alert for potential confusions regarding the \axion" label used in

this paper. This axion is not useful for solving the strong CP problem because the

explicit U(1)R breaking due to gaugino masses exceeds the anomaly contribution.

Also, the axion associated with this approximate U(1)R is di�erent from the Peccei-

Quinn axion associated with the global U(1) recovered in the �;m� ! 0 limit.

Another confusion may be caused by the R-axion from the dynamical supersym-

metry breaking sector. Typically, the models of dynamical supersymmetry breaking

have a spontaneously broken R-symmetry [8]. The associated Nambu-Goldstone

boson is called an R-axion and would be massless in the absence of a source of R-

symmetry breaking, such as a term in the superpotential required for cancelling the

cosmological constant [9]. If there is a hidden sector where supersymmetry is dy-

namically broken, and supersymmetry breaking is mediated from this sector to the

NMSSM via supergravity, gauge interactions, or any other mechanism, then there is

mixing between the R-axion and the axion discussed in this paper. However, this

mixing is suppressed by the scale associated with supersymmetry breaking media-

tion, and may be ignored for practical purposes. It is important however, that the

spontaneous breaking of the R-symmetry within the hidden sector is the source of

gaugino masses in the NMSSM. Therefore, the existence of the R-axion in the hidden

sector requires a mass for the U(1)R axion from the NMSSM.

3.2 Properties of the axion

The light axion may also be identi�ed by studying the spectrum of CP-odd states

given in Section 2. In what follows we will expand in m�=v and m�=v, neglecting the

loop e�ects, which is appropriate for 1 � m�;�=v �> O(10�3). The lightest CP-odd

neutral scalar, A0
1, is the axion associated with the approximate U(1)R symmetry,

and its mass,

MA1
=
p
3s

 
m� sin

2�A +
3m� cos

2�A

2 sin 2�

!1=2
+O(m3=2

�;�
=
p
v) ; (3.1)

vanishes in the limitm�; m� ! 0, in agreement with the arguments presented above.

The other CP-odd neutral scalar, A0
2, has a mass

MA2
� v

cos �A

q
�� sin 2� +O(m�; m�) : (3.2)

The mixing angle 0 < �A < �=2 also has a simple form:

tan �A =
s

v sin 2�
+O(m�;�=v) : (3.3)

Notice that in the smallm�, m� limit the axion massMA1
depends on only four out of

the six input parameters of the Higgs sector: s; tan�;m� and m�. The dependence
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on � and � drops out because they are not related to the breaking of the U(1)R
symmetry.

The couplings of the axion to quarks and leptons may easily be derived by

observing that its A0
v
component has the couplings of the MSSM CP-odd scalar

while A0
s
does not couple to the quarks and leptons. Therefore, the couplings are

proportional to the fermion masses within the up- and down-type sectors separately:

cos �A

v

�
mu cot � �u5u+md tan� �d5d

�
iA0

1 : (3.4)

However, in contrast to the MSSM CP-odd scalar, the couplings of A0
1 to down-type

fermions are not enhanced by tan� because in the large tan � limit Eq. (3.3) gives

cos �A �
v

s

2

tan �
: (3.5)

We then see that the tan � enhancement of the A0
v
coupling to down-type fermions

is exactly compensated by a tan � suppression in the mixing angle �A. On the other

hand, the A0
1 couplings to up-type fermions are doubly suppressed by tan �, and

Eq. (3.4) becomes
2

s

 
mu

tan2 �
�u5u+md

�d5d

!
iA0

1 : (3.6)

The phenomenological implications of this result are clear: when tan� � 1 the cross-

sections for A0
1 production in association with a pair of down-type fermions (e.g. b�b)

do not depend on tan�, while the A0
1 branching ratios into down-type fermions are

enhanced.

Of special interest for Higgs phenomenology is the axion coupling to the SM-like

Higgs boson h0,

Lh0A0
1A

0
1
=

c

2
v h0A0

1A
0
1 ; (3.7)

where

c =
�1

1 + v2

s2
sin22�

(
Ui1

"
� (�� � sin 2�) +

v2

s2

 
�2

2
sin22� + r cos22�

!#

+ Ui2 cos 2�

 
��� v2

s2
r sin 2�

!

+ Ui3
s

v

"
2�2 +

v2

s2
� sin 2�

�
� sin22� � 2�+ � sin 2�

�#)
: (3.8)

Here the index i labels the mass eigenstate corresponding to h0. Although analytical

expressions for the elements of the rotation matrix U may be written in general

[10], here we prefer to derive the trilinear coupling c as a series in v=s (Section 4)

or 1= tan� (Section 5), which should help the reader gain some insight into the

numerical results of Section 6.
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4. The Decoupling Limit, s� v

In this Section we study the decoupling limit of the NMSSM in which A0
1 and the

lightest CP-even scalar, H0
1 , are much lighter than the other scalars. This situation

arises when the gauge-singlet VEV is large2, s� v, as can be seen by inspecting the

expressions for M2
h
, M2

A
and M2

H� given in Section 2. Under those circumstances,

H0
1 is simply the SM-like Higgs boson h0, and the low-energy limit of the model is

just the SM, with the addition of one (mostly singlet) CP-odd scalar, A0
1.

In order to analyze the CP-even neutral states we diagonalizeM2
h
by expanding

in v=s. We keep only the leading order in m�;�=v because we will only be interested

in the region of parameter space where there is a light axion. The CP-even mass

eigenstates are given by Eq. (2.10), with

U11 = 1� v2

s2
�2

8�4
(�� � sin 2�)

2
+O

 
v4

s4

!
;

U12 = �v
2

s2
�2

4�2

 
1� 2�

�3
M2

Z

v2
sin 2�

!
sin 4� +O

 
v3

s3

!
;

U13 = �v
s

�2

2�2

�
1� �

�
sin 2�

�
� v3

s3

(
M2

Z

v2
cos22�

4�4
(�+ � sin 2�)(�� 2� sin 2�)

� �3

4�3

"
�� � sin 2�

4�3

�
3�2 � 6�� sin 2� + �2 sin22�

�
� sin 2� cos22�

#)

+ O
 
v4

s4

!
: (4.1)

The other elements of the orthogonal matrix U ,

U21 = �v
2

s2
sin22� cos 2�

"
�2

2�(�� 2� sin 2�)
+

M2
Z

��v2

#
+O

 
v3

s3

!
;

U31 =
v

s

�2

2�2

�
1� �

�
sin 2�

�
+O

 
v3

s3

!
;

U23 = � U32 = �
v

s

� sin 2� cos 2�

�� 2� sin 2�
+O

 
v3

s3

!
;

U22 = 1� v2

2s2

 
� sin 2� cos 2�

�� 2� sin 2�

!2

+O
 
v4

s4

!
;

2Note that the dimensionless couplings � and � from the superpotential of the Higgs sector are

usually assumed to be roughly of order one, i.e. we ignore cases where a hierarchy is generated

through some kind of �ne-tuning of the couplings.
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U33 = 1� v2

2s2

8<
:
 
� sin 2� cos 2�

�� 2� sin 2�

!2

+

"
�(�� � sin 2�)

2�2

#29=
;+O

 
v4

s4

!
; (4.2)

are less important in what follows, and we only list them here for completeness.

Notice the s=v enhancement in the last line of Eq. (3.8), which requires us to compute

U13 up to an additional order in the v=s expansion.

After computing the eigenvalues of M2
h
as a power series in v=s, we �nd the

following CP-even scalar masses:

Mh0 = v

"
M2

Z

v2
cos22� � �3

2�2
(�� 2� sin 2�)

#1=2
+O

 
v3

s2

!
; (4.3)

MH0 = s

 
��

sin 2�

!1=2

+O
 
v2

s

!
; (4.4)

MH00 =
p
2�s+O

 
v2

s

!
: (4.5)

We see from Eqs. (4.4), (2.11) and (2.14) that to leading order in v=s, the H0, A0
2

and H� scalars are degenerate, forming a weak-doublet complex scalar of mass

s

 
��

sin 2�

!1=2

� v : (4.6)

These are the familiar \heavy" Higgs bosons of the MSSM. Eq. (4.5) con�rms that

the H 00 scalar is also heavy, with a mass of the order of the gauge singlet VEV s.

Therefore, in the limit s � v considered in this section, the only surviving scalars

with masses of order the electroweak scale or smaller are the SM-like Higgs boson h0

and the axion A0
1.

The above discussion is illustrated in Fig. 1, where we plot the exact tree-level

masses of the CP-even Higgs bosons (solid lines), the CP-odd Higgs bosons (dashed

lines) and the charged Higgs boson (dotted), as a function of s, for �xed tan� = 2,

� = � = 0:5 and m� = m� = 1 GeV. In order to guide the eye, we have added

shading to trace the SM-like Higgs boson h0, which from right to left is identi�ed

successively with H0
1 , H

0
2 and H0

3 .

In the limit s� v, the condition M2
h0
> 0 is necessary and su�cient for the ex-

istence of the electroweak asymmetric vacuum described by Eq. (2.5). The resulting

constraint on the parameter space is given at tree-level by

�4

2�2
<

M2
Z

v2
cos22� +

�3

�
sin 2�: (4.7)

Alternatively, for s < v, we see from Fig. 1 that H0
1 = H0 instead, and the

requirement for positivity of the Higgs masses squared implies a lower bound of
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Figure 1: Higgs boson spectrum as a function of s, for tan� = 2, � = � = 0:5 and

m� = m� = 1 GeV.

s. In any way, LEP-II bounds on Mh0 should provide a stronger constraint on the

parameters than the requirement of a local minimum of the potential.

Just as an aside, notice that Eq. (4.3) obeys the usual NMSSM tree-level upper

bound on the lightest CP-even scalar [11, 12],

M2
H0
1
< M2

Z
cos22� +

1

2
�2v2 sin22� ; (4.8)

since Eq. (4.3) can be equivalently rewritten as

M2
h0
=M2

Z
cos22� +

1

2
�2v2 sin22� � 1

2
�2v2

 
sin 2� � �

�

!2

: (4.9)

In this decoupling limit, h0 couples to the quarks and leptons exactly like the

Standard Model Higgs boson. Nevertheless, the decays of h0 may be very di�er-

ent than in the SM, if MA1
< Mh=2, since the h0 ! A0

1A
0
1 decay mode is then

kinematically open. In order to assess the partial width for this decay mode [1],

�(h0 ! A0
1A

0
1) =

c2 v2

32�Mh0

 
1� 4

M2
A1

M2
h0

!1=2

; (4.10)

we need to compute the coe�cient c of the trilinear term Lh0A0
1A

0
1
shown in Eq. (3.7).

Plugging the elements of U shown in Eqs. (4.1) into Eq. (3.8), after a somewhat

tedious calculation we �nd a simple result:

c =
1

2�2
(�� 2� sin 2�) (�+ � sin 2�)

M2
h

s2
+O

 
v3

s3

!
: (4.11)
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Figure 2: Comparison between the analytic approximation (4.11) (dashed) and the exact

results for jcj (solid lines), as a function of s, for tan� = 2, � = � = 0:5, and three di�erent

values of m� = m� (shown, in GeV).

This compact formula has a simple physical interpretation. In the polar coordinates

parametrization of the axion �eld, the axion has only derivative couplings, suppressed

by the axion decay constant, fA. Since the axion decay constant is given by the

U(1)R breaking VEV, in the s� v limit we �nd fA � s, while the derivatives in the

coupling yield a factor of M2
h0
, after taking into account the equations of motion. In

addition, the coupling of the Higgs boson to pairs of axions has to be proportional to

the Higgs VEV. Therefore, the amplitude for h0 ! A0
1A

0
1 is proportional to vM

2
h0
=s2.

The amplitude has to be the same in the polar and orthogonal coordinates, which

explains both the appearance of the Higgs boson mass Mh0 rather than v in the

numerator of Eq. (4.11), as well as the cancellation of the terms of order (v=s)0 and

(v=s)1. In the Appendix we provide the derivation of the Higgs coupling to axion

pairs in the polar coordinates parametrization.

Since � and � are expected to be of order one, the size of c is basically dictated

by the degree of decoupling of the heavy scalars. The quality of the approximation

is shown in Fig. 2, where we compare the prediction of the analytical formula (4.11)

(dashed line) with the exact numerical results for the absolute value of the tree-level

coe�cient jcj (solid lines), as a function of s, for tan � = 2, � = � = 0:5, and three

di�erent values of m� = m� (shown in GeV). We see that as expected, at large s

the analytic approximation agrees pretty well with the exact result for the smallest

values of m� and m�. The approximation fails either at small s, or for larger m�

and m� | recall that we neglected terms of order m�=v and m�=v, while the leading

12



term in Eq. (4.11) is of order v2=s2. The dip around s � 200 GeV is due to the fact

that c changes sign, as we switch from h0 = H0
1 to h0 = H0

2 .

5. The Large tan� Limit

In this section we shall obtain the coe�cient c in the limit of large tan�. To this

end we follow the procedure from the previous Section | expand U in powers of

1= tan� and substitute the result in Eq. (3.8). However, we will not take the limit

m�; m� ! 0, but instead will keep the full dependence on m�; m�, as this does not

cause too much complication. Keeping only leading order terms, Eq. (3.8) simpli�es

to

c = �Ui1 �2 + Ui2 ��� Ui3 2�
2 s

v
: (5.1)

The relevant mixing angles in the CP-even Higgs sector are also easy to compute |

notice that in the large tan� limit, H0 decouples and to leading order H0
1 is a linear

combination of h0
v
and h0

s
only. We �nd

U11 = cos �H ; U12 = 0; U13 = � sin �H ; (5.2)

where

tan 2�H =
2�2sv

2�2s2 �M2
Z
�m�s

: (5.3)

The coe�cient c is then simply

c = ��2 cos �H + 2�2
s

v
sin �H +O

 
1

tan �

!
: (5.4)

In Fig. 3 we show the validity of the approximation (5.4). In analogy to Fig. 2,

we plot jcj, but this time versus tan �, for a �xed value of s = 300 GeV. We see rea-

sonable agreement between the exact result and our approximation, given the large

cancellations between the leading order terms. We have checked that each individual

term contributing to c is reproduced with an accuracy of a few percent, and the

remaining di�erence in the total seen in the Fig. 3 is due to a large cancellation be-

tween the �rst and third terms of Eq. (5.1). Although the analytical approximations

presented here are not intended to substitute the full result, they illustrate these

leading order cancellations. It is also easy now to understand why c vanishes for a

particular value of tan� in Fig. 3: for sin 2� = �=(2�) the analytical approximation

(4.11) gives c = 0.

In conclusion of this section, we note that when in addition we take the limit of

large s, Eq. (5.4) reduces to

c =
�2

2�2
M2

h

s2
+O

 
v3

s3
;

1

tan �

!
; (5.5)

which is also in agreement with the large tan� limit of Eq. (4.11).
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Figure 3: The same as Fig. 2, except plotted as a function of tan�, for �xed s = 300

GeV. Unlike Fig. 2, here there is a di�erent approximation for each value of m�, as we kept

the full m� dependence in this section.

6. Numerical Results

In this section we shall study numerically the scalar spectrum and the coupling

(3.7) of the Standard Model-like Higgs boson h0 to axion pairs. There are several

experimental (Section 6.1) and theoretical (Section 6.2) constraints on our scenario.

Most importantly, we must account for all existing experimental bounds on the

Higgs bosons and their superpartners. (We do not consider experimental bounds

from other superpartner searches, since those depend on the particular framework

of supersymmetry breaking, which we never had to specify for our Higgs sector

analysis.)

The Higgs structure considered here must eventually be embedded in some more

fundamental theory, de�ned at a much higher scale �, possibly the Planck or the

string scale. Hence, the low-energy Higgs sector parameters should be derived in

terms of the parameters from the fundamental theory without excessive �ne-tuning.

It is also theoretically desirable that the couplings in the theory are free of Landau

poles at least up to the scale �.

Our numerical analysis in this Section is designed to address these issues.

6.1 Collider constraints

Let us �rst start with the Higgs sector. LEP is typically able to rule out new particles

with order one couplings close to its kinematic limit. For example, the charged Higgs
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bosons H� can be produced in s-channel Z= processes. The current LEP bound is

mH+ �> 85 GeV [13] and we expect it to be valid in the case of the NMSSM discussed

here as well.

The Standard Model Higgs search at LEP, when reinterpreted as a search for

the lightest CP-even Higgs boson of the MSSM, provides an additional constraint

on our parameter space. The current combined LEP limit is around 113 GeV. As

is well known however, the one-loop corrections to Mh involving third generation

quarks and their superpartners are positive and potentially large [14], so that the

LEP constraint on the tree-level Higgs boson massMh is much weaker. Depending on

the stop/sbottom masses and the amount of squark mixing, the radiative corrections

can shift the tree-level value of the Higgs mass by up to �Mh � 20 � 30 GeV [15].

Hence we shall allow for tree-level Higgs boson masses as low as 80-90 GeV. Of

course, within any given supersymmetric model framework, one can compute this

di�erence exactly in terms of the parameters of the squark sector. Here we prefer to

stay within our model-independent approach and avoid specifying a particular model

of supersymmetry breaking and/or squark spectrum and mixing angles, as this will

hinder the universal applicability of our results. Furthermore, the novel e�ect of

h ! A0
1A

0
1 decays is maximally operational for large h

0 masses (see, e.g. Eq.(5.5)),

where the LEP bound is likely to be satis�ed.

Finally, LEP has also searched for superpartners of the SU(2) Higgs bosons, as

part of their chargino search. Independent of their mass splitting, charged higgsinos

lighter than � 72 GeV [16] have been ruled out. For typical values of the higgsino

mass splittings, the bound extends up to the LEP kinematic limit. The higgsino

masses are typically of order j�j, where the � parameter, familiar from the MSSM,

is given in our notation by

� � �sp
2
: (6.1)

Thus the chargino mass limit constrains the product of � and s. The exact bound

depends on the amount of mixing between the neutralinos, which again would require

us to specify the gaugino masses within a particular model. It also depends on

the particular framework of supersymmetry breaking, e.g. in models with low-scale

supersymmetry breaking the bound from prompt decays of a higgsino NLSP [17]

from the Tevatron can be stronger. We therefore again choose to stay on a model-

independent path, and we consider (rather conservatively) any value of � �> 100 GeV

as allowed.

Searches for the superpartners of the two neutral SU(2)-singlet Higgs bosons (i.e.

\singlinos") are quite challenging. The couplings of the singlinos to gauge bosons

are suppressed by the neutralino mixing angles, and there are practically no limits

coming from direct singlino production or Z-decays [18]. The constraints on a light
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Figure 4: Higgs boson spectrum and the absolute value of the dimensionless H0
1A

0
1A

0
1

coupling c111 (see text), as a function of s (in GeV) and tan �, for � = � = 0:5 and

m� = m� = 1 GeV. The horizontal (blue) dotted lines are contours of M
H0
1
, while the

vertical grid of dotted red lines consists of M
A0
1
iso-mass contours. The thick (green)

vertical line loosely marks the assumed higgsino mass bound of � = 100 GeV, while the

(green) shaded area contains a tachyon or is excluded from the charged Higgs search at

LEP. The dot symbol denotes the values of s and tan � used in Fig. 5. The dashed line

delineates the region where M
H0
1
> 2M

A0
1
at tree-level. To the right of the vertically

running dotdashed (magenta) line the SM-like CP-even Higgs boson is identi�ed with the

lightest CP-even mass eigenstate: h0 = H
0
1 , while to the left of the line we have h0 = H

0
2

instead. In the latter region, the corresponding coupling c211 is larger, on the order of 10%

(see the small s region of Fig. 2).

CP-odd scalar with small couplings to SM fermions are also very loose [19, 20]. For

example, no signi�cant constraints on the axion mass have been set from Z ! A0

at LEP [21], from the Yukawa process e+e� ! f �fA0
1 [22], from direct A0 production

through gluon fusion at the Tevatron [23], from �ts to the electroweak data [24],

or from meson decays [25]. The LEP searches for Z� ! h0A0 ! A0A0A0 within

the MSSM [26] can be reinterpreted as axion searches, but the limits are diluted

because the axion coupling to the Zh0 in our case is smaller by a factor of cos �A
[see Eq. (3.5)]. The relevant lower bounds on MA currently come from beam dump

experiments [27], in the MeV range, and from star cooling rates, MA �> 0:2 MeV [28].

Having summarized the relevant collider constraints, we now present our exact

numerical results for c. In Fig. 4 we show contours of the masses of the SM-like Higgs

boson, Mh0 , [horizontal dotted (blue) lines] and the lightest CP-odd Higgs boson,
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MA0
1
, [vertical dotted (red) lines] as a function of s and tan�, for �xed � = � = 0:5

and m� = m� = 1 GeV. The thick (green) vertical line denotes the assumed higgsino

mass bound of � = 100 GeV and the region to its left is disfavored. Inside the (green)

shaded area there is either a tachyon in the spectrum, or the charged Higgs mass is

below the experimental bound. While it is in principle possible that the radiative

corrections to the Higgs boson masses, neglected here, may shrink, or even eliminate

this excluded region, we do not �nd this latter part of parameter space particularly

attractive, since it is associated with very light higgsinos.

Throughout most of the parameter space shown in Fig. 4, the SM-like Higgs

boson is the lightest CP-even mass eigenstate: h0 = H0
1 . However, at small values of

s, H0 and H 00 become light as well (see Fig. 1). The dotdashed (magenta) line going

vertically marks the point at which the SM-like Higgs boson changes its identity |

from h0 = H0
1 (to the right of the line) to h0 = H0

2 (to the left).

In Fig. 4 we only show the masses of the H0
1 and A0

1 Higgs bosons, since we

are interested in the phenomenology of the h0 ! A0
1A

0
1 decay. The �rst important

result seen in Fig. 4 is the location of the region of parameter space, where this decay

is open. The dashed line in Fig. 4 delineates the relevant part of parameter space

where MH0
1
> 2MA0

1
at tree-level. The location of this region is easily understood.

Recall that MA0
1
scales with

p
s, as evident from the Figure, as well as Eq. (3.1).

Then notice that unlike the case of the MSSM, here the lightest CP-even Higgs

boson mass decreases with tan �, so that tan � values as low as 1 � 3 are possible.

Combining these two observations, we easily see that the h0 ! A0
1A

0
1 decay is most

likely to be open at small tan � and small s.

Our second main result shown in Fig. 4 is the strength of the Higgs to axion

coupling. We show contours of the absolute value of the dimensionless coupling

jc111j, which we de�ne in analogy to Eq. (3.7):

LH0
i
A0
j
A0
k

=
v

2

X
i;j;k

cijk H
0
i
A0
j
A0
k
: (6.2)

As we already explained above, to the right of the vertical dotdashed magenta line,

c111 is identical to the coe�cient c de�ned in Eq. (3.7). We see that in the region of

parameter space, free of any experimental constraints, c can be as large as 0:05. We

also see the possibility of exact cancellation and vanishing c. Indeed, in the limit of

large s, our leading order approximation Eq. (4.11) vanishes for tan� = 2+
p
3 � 3:7,

in reasonable agreement with Fig. 4. In the small s region, where h0 = H0
2 , the

corresponding c211 can be even larger, on the order of 10% or more.

In summary, our main conclusion from Fig. 4 is that for �xed � and �, values of

c are typically maximized at small s and small tan� | exactly in the spot where the

h0 ! A0
1A

0
1 channel is most likely to be open. This could also have been anticipated
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Figure 5: The same as Fig. 4, but as a function of � and �, for s = 300 GeV, tan � = 2

and m� = m� = 1 GeV. The dot symbol shows the values of � and � used in Fig. 4.

from the approximate scaling c � M2
h0
, which we found in the two limiting cases

considered earlier.

We now turn our attention to the dependence on the other two main parameters:

� and �. To this end, we �x s = 300 GeV and tan� = 2, and show the Higgs spectrum

and jc111j in Fig. 5 as a function of � and �, again with �xed m� = m� = 1 GeV.

The (green) shaded area is again excluded because of tachyonic or light charged

Higgs states, and the (green) vertical line denotes the assumed higgsino bound � =

100 GeV, with the region to the left of it being disfavored. This time the SM-like

Higgs boson is unambiguously identi�ed as h0 = H0
1 . On the other hand, the axion

mass is completely �xed in terms of m�, m�, s and tan� [recall the discussion after

Eq. (3.3)]. For the values of the parameters considered here, MA0
1
= 33:72 GeV

and its fractional variation throughout the whole Figure is less than 1 part in 105.

The dashed line, depicting the region MH0
1
> 2MA0

1
, is therefore coincident with the

contour of MH0
1
= 67:44 GeV.

We see from Fig. 5 that large ratios of �=� are disfavored. This can be easily

understood from Eq. (4.3) | the second term gives a large negative contribution

to the lightest CP-even Higgs boson mass, which results in M2
h0
< 0. Nevertheless,

there is a signi�cant allowed region with naturally large couplings � and �. Now

the lightest CP-even Higgs boson mass can be larger than the LEP limit already at

tree-level. The coe�cient c is again maximized in the region with the largest Mh0 ,

and again values of c � 0:05 are possible.
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Figure 6: The branching ratio B(h0 ! A
0
1A

0
1) in percent, as a function of the physical

Higgs mass M
phys

h0
and the value of the coe�cient c, assuming MA0

1
�M

phys

h0
.

Given that the small axion mass allows for the h0 ! A0
1A

0
1 decays in principle,

and that the coe�cient c can be sizable (see Figs. 4 and 5), it is interesting to quantify

how the branching fractions of the SM-like Higgs boson, h0, are a�ected. To this

end, one must use the physical mass M
phys

h0
, as the partial widths for h0 ! A0

1A
0
1 and

h0 ! b�b have the opposite dependence onMphys

h0
. So, by using the (smaller) tree-level

mass, one would be overestimating �(h0 ! A0
1A

0
1) and underestimating �(h0 ! b�b).

This is why in Fig. 6 we show the branching ratio for h0 ! A0
1A

0
1 decays

B(h0 ! A0
1A

0
1) =

�(h0 ! A0
1A

0
1)

�SM + �(h0 ! A0
1A

0
1)

; (6.3)

as a function of the physical Higgs mass M
phys

h0
and the value of the coe�cient c,

assuming MA0
1
� Mphys

h0
and MA0

2
� Mphys

h0
. Here we have taken �SM as the width

of the SM Higgs boson. Fig. 6 should be interpreted as follows. After �xing the

fundamental input parameters �, �, m�, m�, s and tan �, one should compute the

physical Higgs boson mass Mphys

h0
in terms of the parameters of the squark sector

derived within a given model. Then the coe�cient c can be read o� from Figs. 4 and

5, and the corresponding branching fraction B(h0 ! A0
1A

0
1) for the resulting values

of c and M
phys

h0
is given in Fig. 6.

From Fig. 6 we can see the potential importance of the h0 ! A0
1A

0
1 decay mode.

In the theoretically preferred mass range M
phys

h0 �< 160 � 180 GeV of the NMSSM,

this decay mode completely dominates for c �> 0:1. We have seen that such values

of c are in principle possible, although in limited regions of parameter space. For
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the more typical values of c � 0:02� 0:05, the Higgs boson branching fraction into

axions is comparable, if not larger, than B(h! b�b), and may still signi�cantly a�ect

the Higgs boson collider searches utilizing the b�b mode.

6.2 Theoretical prejudice

The theoretical constraints discussed in this subsection are less robust, since one must

de�ne a framework. For example, when requiring the absence of Landau poles for

the Higgs couplings � and �, one must specify the high-energy scale �, at which the

e�ective theory description of the NMSSM breaks down. Naturally, the constraints

would be stronger, if � is identi�ed with the GUT or Planck scale, rather than some

intermediate scale, related to the (mediation of) supersymmetry breaking.

The Renormalization Group equations (RGE's) for the Yukawa couplings of the

NMSSM have been extensively studied in relation to the question of the absolute

upper limit on the lightest CP-even Higgs mass [29, 30]. If � is identi�ed with

the GUT scale, the perturbativity requirement implies � �< 0:87 and � �< 0:63 [12,

31, 29, 20]. If, however, � is identi�ed with an intermediate scale, as in gauge-

mediated models [10, 32], then the bounds can be somewhat relaxed, e.g. � �< 1:36

for � � 50 � 100 TeV [10]. We see that these constraints still leave a lot of the

available parameter space in Figs. 4 and 5, where the new decay h0 ! A0
1A

0
1 is

possible, and its branching ratio is sizable.

One may also wonder if the low values of m� and m� needed in order to suppress

the axion massMA1
(see Eq. (3.1)) can appear naturally, without any signi�cant �ne-

tuning. So far we have adopted a low-energy point of view and never speci�ed the

particular model framework for supersymmetry breaking and its communication to

the NMSSM sector. The size of m� and m� will depend on two factors: the boundary

conditions at the high-energy scale �, where the soft supersymmetry breaking pa-

rameters are generated, and second, the amount of (logarithmic) RGE running from

that scale down to the electroweak scale v. Notice that due to the singlet nature

of Ŝ, the one-loop beta function for m� only depends on m� and m�. In the U(1)R
limit both of these two parameters start out small at the high-energy scale �, and

the generated value for m� at the weak scale is typically also rather small. On the

other hand, the one-loop beta function for m� depends on the gaugino masses M1

and M2, as well as the rest of the A-term parameters, which can be relatively large

already at the scale �. Thus the induced value for m� at the weak scale can be much

larger than m�. However, a closer inspection of Eq. (3.1) reveals that the axion mass

is usually more sensitive to m� rather than m�. For example, in the large tan� limit

we have cos �A � 1= tan�, hence

M2
A0
1
� O (m�s) +O

 
m�s

tan�

!
� O (m�s) :
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Without a particular model, it is di�cult to be more speci�c at this point. We shall

therefore leave this question open for future studies. Let us only point out that there

exist at least two very well motivated frameworks, in which the boundary conditions

for m� and m� are zero at the scale � | gauge mediation [33, 34] and gaugino

mediation [35].

7. Conclusions

We have discussed a limit of the NMSSM where a light CP-odd scalar (axion) is

present in the Higgs spectrum. The light axion appears as a result of an approxi-

mate global U(1)R symmetry of the scalar potential, which is spontaneously broken.

We found that the mass of the axion is proportional to the soft breaking trilinear

couplings m� and m�, and if those are in the GeV range, the axion can easily be

lighter than half the SM-like Higgs boson mass, M0
h
. In those cases, we computed

the h0A0
1A

0
1 coupling and found that it can have a direct impact on phenomenology,

as it can substantially modify the SM-like Higgs boson collider signatures.

In conclusion, we feel that our results �ll a major gap in the extensive liter-

ature on the Higgs sector of the NMSSM. Previous NMSSM studies have mostly

concentrated on setting absolute upper limits on the SM-like Higgs boson mass [36]

(which is of primary interest for the production of h0 in collider experiments) or

the related singlino phenomenology [18, 37]. However, the case of a light CP-odd

axion considered here has largely been overlooked. In light of the interesting phe-

nomenological implications of the scenario presented here, and the symmetry reasons

behind its motivation, it is worth pursuing the case of a light CP-odd scalar in future

phenomenological studies.
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Appendix: Higgs Coupling to Axions in Polar Field Coordi-

nates

In this Appendix we derive the Higgs boson coupling to axion pairs using the polar

�eld coordinates. Although the physical results are independent of the parametriza-

tion of the degrees of freedom, and the orthogonal �eld coordinates used in section
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2 [see Eq. (2.5)] are convenient enough, the polar �eld coordinates are particularly

appropriate for describing the axion in the limit where we neglect its mass.

Consider the following parametrization:

Hd =

0
B@

1p
2
[(v + h0

v
) cos� �H0

v
sin �] ei(A

0
v
tan ��G0)=v

� G� cos � +H� sin�

1
CA ;

Hu =

0
B@ G+ sin � +H+ cos �

1p
2
[(v + h0

v
) sin� +H0

v
cos �] ei(A

0
v
cot �+G0)=v

1
CA ;

S =
1p
2

�
s+ h0

s

�
eiA

0
s
=s : (A.1)

With this parametrization, it is straightforward to derive the masses and mixing

angle of the CP-odd states obtained in section 3.2.

More importantly, the scalar potential Eq. (2.5) does not involve the axion �eld

in the m�;� ! 0 limit. If we neglect the axion mass, then only the kinetic terms give

rise to axion couplings. This is the usual statement that a Nambu-Goldstone boson

has derivative couplings in the polar �eld coordinate parametrization. The kinetic

terms for Hu; Hd and S include canonically normalized kinetic terms for the physical

states as well as derivative couplings of CP-odd scalar pairs with CP-even scalars.

The SM-like Higgs boson coupling to axion pairs can be easily derived:

L0
h0A0

1
A0
1
=

c0v

2M2
h

h0@�A
0
1@

�A0
1 ; (A.2)

where the dimensionless parameter c0 is given by

c0 = 2
M2

h

v2

�
(U11 + 2U12 cot 2�) cos

2�A +
v

s
U13 sin

2�A

�
: (A.3)

In the s� v limit, the elements of the matrix U that rotates the CP-even scalars to

the mass eigenbasis have been computed in section 4. Using Eq. (4.1) we �nd a very

simple result:

c0 = �2c [1 +O(v=s;m�;�=s)] ; (A.4)

where c is given by Eq. (4.11). The last step of this computation is to check that

the decay width for h0 ! A0
1A

0
1 is the same as the one obtained using orthogonal

coordinates [see Eq. (4.10)]. This straigthforward exercise provides the explanation

for the M2
h
=s2 dependence of c in Eq. (4.11).
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